Driver Drowsiness Detection Using Condition-Adaptive Representation Learning Framework
                    
                        
                            نویسندگان
                            
                            
                        
                        
                    
                    
                    چکیده
منابع مشابه
Driver Drowsiness Detection System Based on Feature Representation Learning Using Various Deep Networks
Statistics have shown that 20% of all road accidents are fatigue-related, and drowsy detection is a car safety algorithm that can alert a snoozing driver in hopes of preventing an accident. This paper proposes a deep architecture referred to as deep drowsiness detection (DDD) network for learning effective features and detecting drowsiness given a RGB input video of a driver. The DDD network co...
متن کاملDriver Drowsiness Detection System Using Image Processing
Drivers who do not take regular breaks when driving long distances run a high risk of becoming drowsy a state which they often fail to recognize early enough according to the experts. Studies show that around one quarter of all serious motorway accidents are attributable to sleepy drivers in need of a rest, meaning that drowsiness causes more road accidents than drink-driving. Attention assist ...
متن کاملDriver Drowsiness Detection Using Multi-feature Analysis
now a day’s Road accidents are common in developed as well as developing countries. These accidents happen due to different different reasons like sleeping disorders, working in night shift or more than eight hours as over time, side effects of medicine, alcohol, speeding, freakishness of teenager’s etc. One of the most important reasons is drowsiness. Drowsiness means sleepiness, which affects...
متن کاملLong-term Multi-granularity Deep Framework for Driver Drowsiness Detection
For real-world driver drowsiness detection from videos, the variation of head pose is so large that the existing methods on global face is not capable of extracting effective features, such as looking aside and lowering head. Temporal dependencies with variable length are also rarely considered by the previous approaches, e.g., yawning and speaking. In this paper, we propose a Longterm Multi-gr...
متن کاملDriver Drowsiness Detection by Identification of Yawning and Eye Closure
Today most accidents are caused by drivers’ fatigue, drowsiness and losing attention on the road ahead. In this paper, a system is introduced, using RGB-D cameras to automatically identify drowsiness and give warning. In this system two important modules have been utilized simultaneously to identify the state of driver’s mouth and eyes for detecting drowsiness. At first, using the depth informa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Intelligent Transportation Systems
سال: 2019
ISSN: 1524-9050,1558-0016
DOI: 10.1109/tits.2018.2883823